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Facilities in NTT Telecom. Bldg.

SANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

4

Computer/IT system 

Management system 
Telecom system 

Commercial 
Power Vehicle 

 with Back-up Power 

Storage system 

DC 
AC 

Air–Conditioning

VRLA Battery

Access to Electricity Gas Turbine Engine

UPS

Rectifier (RF)

NTT DoCoMo 
Yoyogi Bldg. 

Yokohama 
Media Tower 



OSAKA UNIVERSITY

History of Rectifier in NTT
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NTT (Nippon Telegraph and Telephone) History Center of Technologies: http://www.hct.ecl.ntt.co.jp/index.html 
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DC distribution is applied for telecom buildings and data centers. 
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Power density V.S. efficiency  
of DC–DC converter in rectifier

Power density of DC–DC converters in NTT
•  A Rectifier consists of PFC (Power Factor Correction) circuits and 

isolated DC–DC converters. 
•  Power density of DC–DC converters has been increasing 

•  Higher switching frequency by using power transistors 
•  Higher voltage and lower supply current by SiC power devices
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Issues to be resolved 
–Energy saving toward low carbon society–
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Energy saving in telecom bldg. and data centers

•  NTT has proposed “THE GREEN VISION 2020” toward low 
carbon society. 

•  Energy saving of 100 TWh per year will be achieved in 2025 
(Green of ICT). 

•  In telecom buildings and data centers, energy saving of 23.5 
TWh (30% in 2025) has to be accomplished. 

- http://www.ntt.co.jp/csr/2010report/special/vision01.html 
- Y. Sugiyama, “Green ICT toward Low Carbon Society-Green R&D Activities in NTT”, 
-   Proceedings of 4th International Workshop on Green Communications, Kyoto, Japan, 2011.

Power consumption in whole ICT fields Power consumption 
 in telecom buildings and data centers

100 TWh 23.5 TWh

17.5 TWh
64 TWh
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*ICT: Information and Communication Technology
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Energy saving in DC distribution system
•  To realize 30% energy saving in telecom buildings and data 

centers, highly efficient power supply system is indispensable. 
•  Conversion efficiency of 94% is required from the front–end 

converter to the point of load converter.

AC 
200V

DC380V
DC48V DC12V

DC1.2V

η=0.95
η=0.95 η=0.97 η=0.91

η=0.80

19 inch Rack
Server

380V DC power supply

On BoardRectifier Memory 

CPU DC1.2VAC/DC DC//DC DC/DC DC/DC DC/DC
DC/DC

AC 
200V DC384V DC 

48V, 
12V

DC1.2V

η=0.98 η=0.98 η=0.98

η=0.94

19 inch Rack
Memory 

CPU DC1.2VAC/DC DC//DC DC/DC
DC/DC

Server On Board

One of Solutions

SANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

9

- T. Ninomiya, Y. Ishizuka, R. Shibahara and S. Abe, “Energy–saving technology using next–generation power electronics”, 
 Proceedings of 2012 IEE–Japan Industry Applications Society Conference, Chiba, Japan, 2012 (in Japanese).

η=0.975 η=0.975
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Necessity of high performance converter 
•  High performance isolated DC–DC converters ( or DC transformer: fixed 

voltage transfer ratio) are necessary. 

•  To achieve highly efficient and ultra compact converters, 
•  Ultra–low loss and high–speed novel power devices such as SiC and GaN are attractive. 
•  High frequency operation of novel power devices contributes to minimizing passive 

components. 
•  Series–parallel connection topology of highly integrated DC–DC converters is one of 

options. 

•  To realize flexible transformer ratios, 
•  Series–parallel connection topology of modular DC–DC converters is one of options. 
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Target DC–DC 
 in rectifier

Aim

Efficiency 98% 97.5% For Energy saving

Power density 10 W/cm3 2 W/cm3 To be installed into 19 inch rack 
 with customer equipment

Transformer ratio 384 V–12 V 
 and / or 48 V

384 V–384V To connect POL (Point of Load) 
 converters
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Approach to high power density DC–DC converter 
–ISOP and IPOS topology of modular converters–
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ISOP–IPOS topology
•  Higher input voltage can be injected in ISOP (Input Series and Output 

Parallel) topology. 
•  IPOS (Input Parallel and Output Series) topology makes higher output 

voltage. 
•  Conversion efficiency depends on an isolated DC–DC converter 

(low–voltage and low–power) module. 
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DC–DC converters in R&D
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Example
•  Power density and conversion efficiency of a high voltage high 

power converter are compared with low voltage low power one. 
•  Single 256 V–384 V converter with SiC power devices 
•  A 256 V–384 V converter using eight 32 V–48 V converters 

with GaN power devices
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Experiments of non–isolated converters

SANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

15

Output  
Capacitor 

SiC Power Devices 
(TO247 packages) 
1200V, 80mΩ

Input 
Inductor 

GaN Power Devices 
(Bare chips) 
100V, 7mΩ

Input 
Inductor 

Output  
Capacitor 

Experimental results of a 32V – 48V converter using GaN–FET (EPC)  

Experimental Results of a 256V–384V converter using SiC–MOSFET (CREE) 

Gate to Source Voltage (0 V-5 V )
Drain to Source Voltage (0 V-48 V )

Input Current (14.1A)
Output Current (9.3A)

Input Voltage (256 V)

Output Voltage (384 V )

Input Current (9.0A)
Output Current (6.0A)

100 kHz

1 MHz



OSAKA UNIVERSITY

Input voltage balance in ISOP topology

•  Input voltages of converters balances ideally. 
•  Mismatch of output impedances causes the input voltage unbalance 

under real circuit operation conditions. 
•  Imbalance of input voltages were calculated when output impedances 

vary from 1% to 5% in eight converters. 
•  Input voltages vary 2% from the rated voltage (48 V ± 1V), and the 

influence is negligible.
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Conversion Efficiency 

ISOP and IPOS converter prototypes
•  A 384 V–384 V 2.4 kW consists of eight 384 V–48 V modules connected in 

IPOS. 
•  Maximum efficiency was 95.5% at full load. 

•  A 384 V–48 V 2.4 kW consists of eight 48 V–48 V modules connected in ISOP. 
•  Maximum efficiency was improved from 95.5% to 96.7 % 
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384 V–384 V 19.2 kW ISOP–IPOS Converter
•  Sixty four 48 V–48 V 300 W converter modules (VICOR, 

V048F480T006) were utilized. 
•  A 384 V–48 V 2.4 kW consists of eight modules connected in ISOP. 
•  A 384 V–384 V 19.2 kW consists of eight 384 V–48 V 2.4 kW 

converters in IPOS. 
•  Maximum conversion efficiency was 96.6% and the power density was 

10 W/cm3 without fans. 
•  Maximum efficiency of each 48 V–48 V module is 96.7%. 
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Transient behavior of ISOP converter

•  Start-up waveforms were measured under no load condition.   
•  No input voltage unbalances were observed. 

•  Transient characteristics in rapid load variation were shown. 
•  Input voltage fluctuation was within 100 ± 5 %. 
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384 V–12 V 98% Converter
•  Eight 48 V–12 V converter modules (VICOR, IB048E120T40N1-00) 

were utilized to fabricate a 384 V–12 V 2.4 kW ISOP converter. 
•  Maximum efficiency of each converter module is 98.2 %. 

•  Maximum conversion efficiency was 98.1%. 
•  Output voltages of 12 V, 48 V, 384 V are obtained by IPOS with 98% 

efficiency. 
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Improvement of power density and efficiency
•  In DC–DC converters for NTT telecom power supply, output power density has 

been increasing. 
•  Higher conversion efficiency has been also achieved. 

•  The 384 V–384 V converter using 48 V–48 V converter modules connected in 
ISOP–IPOS achieved higher power density. 

•  Higher efficiency has been also achieved by using 48 V–12 V converters
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Conclusions

•  DC distribution for telecom buildings and data centers was introduced. 
•  Highly efficient DC power supply is indispensable to realize low 

carbon society. 
•  Availability of ISOP–IPOS topology was shown to realize highly 

efficient and ultra compact converters. 
•  A 19.2 kW 384 V–384 V converter was fabricated by using sixty–

four 48 V–48 V converter modules with the efficiency of 96.6%. 
•  A 2.4 kW 384 V–12 V converter was fabricated by using eight 48 V–

12 V converter modules with the efficiency of 98.1%. 
•  I/O voltages are arbitrarily selected in ISOP–IPOS topology. 

•  DC–DC converters with ISOP–IPOS topology contribute to realizing 
highly efficient DC microgrids.
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Thank you for your attention.

SANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

23



OSAKA UNIVERSITYSANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

24



OSAKA UNIVERSITY

Power density and efficiency estimation

•  Calculation results of efficiency and power density are shown. 
•  Ideal circuit condition: Stored energy in COSS is only 

considered to calculate switching loss energy 
•  Real circuit condition: Parameters in the experiment is taken 

into account 
•  Higher power density will be achieved in the low voltage and low 

power converter 
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